Klassenstufe 5 bis 6 / 2008

  1. Von den jeweils 5 Antworten ist genau eine richtig.
  2. Jeder Teilnehmer bekommt zu Beginn 30 Punkte. Bei einer richtigen Antwort werden die dafür vorgesehenen 3, 4 oder 5 Punkte hinzu addiert. Wird keine Antwort gegeben, gibt es 0 Punkte. Ist die Antwort falsch, werden 3/4, 4/4, oder 5/4 Punkte abgezogen. Die höchste zu erreichende Punktzahl ist 150, die niedrigste 0.
  3. Taschenrechner sind nicht zugelassen.

Klicke mit der Maus bei jeder Aufgabe jeweils eine Antwort an. Am Ende der Aufgaben kannst du deine Antworten überprüfen lassen und erhältst online ein Zertifikat mit deinem Punktestand ausgestellt!


1. Bei welcher der 5 Rechenaufgaben mit den Zahlen 2, 0, 0 und 8 ist das Ergebnis am kleinsten?
(A) (B) (C) (D) (E)
2 + 0 + 0 + 8 200 / 8 2 * 0 * 0 * 8 200 - 8 8 + 0 + 0 - 2

2. Wie viel ist die Hälfte von einem Drittel von einem Viertel von 24?
(A) (B) (C) (D) (E)
12 8 6 3 1

3. Lukas hält zwei aus Pappe ausgeschnittene gleichseitige Dreiecke in der Hand, die er auf unterschiedliche Weise auf dem Tisch anordnet. Dabei entstehen Figuren, deren Umriss Lukas nachzeichnet. Welche der abgebildeten Zeichnungen kann nicht der Umriss der beiden irgendwie zusammengelegten Dreiecke sein?
(A) (B) (C) (D) (E)

4. Unsere Schulwandzeitung soll eine neue Überschrift bekommen. Für das ""E" habe ich elf Quadrate der Seitenlänge 2 cm ausgeschnitten, zusammengeschoben und auf Papier geklebt. Als ich mit einem Stift die äußere Linie nachziehe, frage ich mich, wie lang diese Linie ist. Es sind
(A) (B) (C) (D) (E)
70cm 67cm 65cm 48cm 44cm

5. Als Peter zum Heft seiner Banknachbarin rüberguckt, sieht er
Was gehört an die vom Löschblatt verdeckte Stelle zwischen den beiden Einsen?
(A) (B) (C) (D) (E)
0 1 + - 9

6. Die Summe der Ziffern einer 3-stelligen Zahl ist 12. Die Einerziffer ist um 4 größer als die Zehnerziffer und sogar um 5 größer als die Hunderterziffer. Diese Zahl ist
(A) (B) (C) (D) (E)
615 237 372 327 126

7. Welche Zahl ist gemeinsam mit den Zahlen 2, 3 und 4 in die nebenstehende (2 x 2)-Tabelle einzutragen, damit die Summe der beiden Zahlen in der ersten Spalte 9 und die in der zweiten Spalte 6 beträgt?
(A) (B) (C) (D) (E)
6 3 5 8 7

8. Ich spiele mit meiner Cousine und möchte mit ihr eine Pyramide aus verschieden großen Scheiben bauen. Die rote Scheibe ist kleiner als die blaue, die violette größer als die weiße. Wie könnte die fertige Pyramide aussehen?
(A) (B) (C) (D) (E)

9. Teilt Berit ihr Alter durch 5, bleibt der Rest 3. Berits Freund Yakob ist doppelt so alt wie Berit. Teilt er sein Alter durch 5, bleibt als Rest
(A) (B) (C) (D) (E)
0 1 2 3 4

10. In unserer Vorstadtsiedlung sind die Grundstücke ganz ordentlich ausgerichtet (s. Zeichnung). Als Benno Isa besucht, läuft er drei Grundstücke lang nach Norden (N), dann eines nach Osten (O), zwei nach Süden (S) und drei nach Westen (W). Isa begleitet ihn zurück, sie kennt einen viel kürzeren Weg. Welcher ist das?
(A) (B) (C) (D) (E)
2N - 2O 3O - 1N 1S - 2O 1N - 2O 3O - 2N

11. Die drei alten Freundinnen Loni, Tina und Elsa treffen sich im Park zum Stricken. "Loni, dein Strickstrumpf ist länger als die Strümpfe von Tina und Elsa zusammen," urteilt ihr gemeinsamer Freund Ernst, "und Elsas Strumpf ist länger als die Strümpfe von Tina und Loni zusammen," setzt er an Elsa gewandt fort. Was trifft nun sicher zu?
(A) (B) (C) (D) (E)
Elsa hat den längsten Strumpf Loni hat den längsten Strumpf Tina hat den längsten Strumpf Die drei Strümpfe sind gleich lang Was Ernst beschreibt, ist nicht möglich

12. Die rechts gezeichnete Pyramide besteht aus 4 Schichten, die komplette 1. und 3. Schicht ist grau, die komplette 2. und 4. weiß. Wie viele weiße Steine wurden insgesamt verbaut?
(A) (B) (C) (D) (E)
9 10 12 13 14

13. Lenis Leidenschaft ist das Multiplizieren mit 5, Mary addiert am liebsten 4 und Nils mag von jeder Zahl am liebsten 3 subtrahieren. Ich gebe die Zahl 6 vor. In welcher Reihenfolge müssen die drei rechnen, damit 19 herauskommt, nachdem jeder einmal seine Lieblingsrechnerei vollzogen hat?
(A) (B) (C) (D) (E)
Nils - Mary - Leni Mary - Leni - Nils Leni - Nils - Mary Nils - Leni - Mary Leni - Mary - Nils

14. Hier ist ein Stück einer Multiplikationstafel Genauso ist die zweite Tafel aufgebaut, leider fehlen ein paar Zahlen
Welche Zahl gehört an die Stelle des Fragezeichens?
(A) (B) (C) (D) (E)
54 56 65 36 42

15. Welche Zahl muss den ersetzen, damit die Gleichung 3 * 12 * 15 = 6 * * 5 korrekt ist?
(A) (B) (C) (D) (E)
18 20 24 27 30

16. Fanni ist noch dabei, Schneebälle zu formen, da beginnt ihr Vater schon die Schneeballschlacht. Während sich die beiden wild bewerfen, kann Fanni noch 5 weitere Bälle formen. Als sie 14 Bälle verschossen hat, gibt ihr Vater auf. Da hat sie noch 7 Schneebälle übrig. Wie viele hatte Fanni schon vor der Schneeballschlacht für sich bereitgelegt?
(A) (B) (C) (D) (E)
21 19 16 12 10

17. Jeder der 3 Buchstaben B, H und O ist in der nebenstehenden Additionsaufgabe durch genau eine der Ziffern 1 bis 9 zu ersetzen, so dass die Rechnung richtig ist. Dann ist O =
(A) (B) (C) (D) (E)
1 2 5 8 9

18. Onkel Willy bemerkt, dass er jeden Winter 5kg zunimmt. Im Sommer schwimmt und radelt er stets und nimmt beglückt 4kg wieder ab, im Frühling und Herbst verändert sich sein Gewicht nicht. Wenn Onkel Willy am 10. April 2008 77kg wiegt, wie viel wog er dann im Herbst 2000?
(A) (B) (C) (D) (E)
65kg 66kg 73kg 77kg 88kg

19. Welche der Figuren (A), . . . , (E) lässt sich nicht durch Umsetzen genau eines Würfels aus der rechts abgebildeten Figur erhalten? Jede der Figuren besteht aus genau 5 Würfeln. Beachte, dass die Bauwerke aus unterschiedlichen Richtungen gezeichnet wurden.
(A) (B) (C) (D) (E)

20. Eine Spielfigur soll so über das Spielbrett (s. Bild) bewegt werden, dass sie auf ihrem Weg jedes Feld genau einmal betritt. Sie darf sich - wie der Turm beim Schach - nur waagerecht und senkrecht bewegen. Wo muss sie starten?
(A) (B) (C) (D) (E)
von irgendeinem Eckfeld jedes Feld ist möglich von irgendeinem grauen Feld nur vom grauen Mittelfeld von irgendeinem weißen Feld

21. Wie viele 2-stellige Zahlen gibt es, bei denen die Zehnerziffer größer ist als die Einerziffer?
(A) (B) (C) (D) (E)
9 18 27 36 45

22. Auf das Dartbrett (s. Bild) wird mit Pfeilen geworfen. Je nach getroffenem Ring werden 10, 5, 2 oder 0 Punkte vergeben. Ich habe zwei Versuche und addiere meine Punkte. Wie viele verschiedene Gesamtpunktzahlen sind möglich?
(A) (B) (C) (D) (E)
7 9 10 15 16

23. Vor der Musikschule treffen sich ein Geiger, ein Flötist und ein Trompeter. Einer heißt Ulrich, einer Ivo und einer Alex. Der Geiger hat weder Bruder noch Schwester, er ist auch der Jüngste. Alex ist älter als der Flötist und spielt mit Ulrichs Schwester im Orchester. Dann heißen - in dieser Reihenfolge - Geiger, Flötist und Trompeter
(A) (B) (C) (D) (E)
Alex, Ulrich, Ivo Ulrich, Ivo, Alex Ivo, Alex, Ulrich Ivo, Ulrich, Alex Alex, Ivo, Ulrich

24. In der Piratenschule übt sich jeder künftige Pirat im Nähen schwarz-weißer Fahnen. Im ersten Test ist eine Fahne zu nähen, bei der drei Fünftel der Fläche schwarz sein müssen. Wie viele der abgebildeten Fahnen sind gelungen?
(A) (B) (C) (D) (E)
keine eine zwei drei alle vier

25. Die Buchstaben a, b, c , d und e stehen für 5 verschiedene Ziffern. Wenn nun a + a + a = c und b + b + b = d und c + d = e gilt, dann ist e =
(A) (B) (C) (D) (E)
0 2 6 8 9

26. Von den 4 Punkten A, B, C und D, die auf derselben Geraden liegen, weiß ich, dass = 11 cm, = 9 cm, = 12 cm und = 10 cm ist. Wie groß ist der Abstand zwischen den beiden am weitesten voneinander entfernten Punkten?
(A) (B) (C) (D) (E)
14cm 21cm 23cm 40cm 33cm

27. Johann umrundet einen Tisch einmal und macht dabei 4 Fotos. Er bewegt sich vom markierten Punkt in Pfeilrichtung. In welcher Reihenfolge sind die Fotos entstanden?
(A) (B) (C) (D) (E)
2 1 4 3 4 2 1 3 2 4 3 1 2 1 3 4 3 2 1 4

28. In der Gleichung LUC + DU = ASS steht jeder Buchstabe für eine Ziffer (verschiedene Buchstaben für verschiedene Ziffern, gleiche Buchstaben für gleiche Ziffern). Welchen Wert hat AC - LD?
(A) (B) (C) (D) (E)
10 11 12 21 22

29. Im Busfahrplan sind die Linien 1, 2 und 3 eingezeichnet. Linie 1 fährt alle Haltestellen ab, also ABCDEFGHA, und ist 20km lang. Linie 2 fährt ABCDGHA mit 12km, während Linie 3, DEFGHAD, 17km lang ist. Die viel benutzte Innenroute ADGHA soll die Linie 4 werden. Wie lang ist diese?
(A) (B) (C) (D) (E)
5km 7,5km 8km 9km 9,5km

30. Für ein Spiel hat mein Freund in einem Korb 7 Beutel bereitgelegt, in denen 1, 2, 3, 4, 5, 6 bzw. 7 Murmeln sind. Ich nehme irgendwelche 2 Beutel heraus, Lisa irgendwelche 3 Beutel. Lisa zählt die Murmeln in ihren 3 Beuteln und sagt mir, dass sie wisse, dass ich eine gerade Anzahl von Murmeln hätte. Wie viele Murmeln hat Lisa?
(A) (B) (C) (D) (E)
12 15 6 9 10


[zurück]

© schuelerlexikon.de
Impressum | AGB | Datenschutz